DeepInfra
Check out available LLMs here.
import { DeepInfra, Settings } from "llamaindex";
// Get the API key from `DEEPINFRA_API_TOKEN` environment variable
import { config } from "dotenv";
config();
Settings.llm = new DeepInfra();
// Set the API key
apiKey = "YOUR_API_KEY";
Settings.llm = new DeepInfra({ apiKey });
You can setup the apiKey on the environment variables, like:
export DEEPINFRA_API_TOKEN="<YOUR_API_KEY>"
Load and index documents
For this example, we will use a single document. In a real-world scenario, you would have multiple documents to index.
const document = new Document({ text: essay, id_: "essay" });
const index = await VectorStoreIndex.fromDocuments([document]);
Query
const queryEngine = index.asQueryEngine();
const query = "What is the meaning of life?";
const results = await queryEngine.query({
query,
});
Full Example
import { DeepInfra, Document, VectorStoreIndex, Settings } from "llamaindex";
// Use custom LLM
const model = "meta-llama/Meta-Llama-3-8B-Instruct";
Settings.llm = new DeepInfra({ model, temperature: 0 });
async function main() {
const document = new Document({ text: essay, id_: "essay" });
// Load and index documents
const index = await VectorStoreIndex.fromDocuments([document]);
// get retriever
const retriever = index.asRetriever();
// Create a query engine
const queryEngine = index.asQueryEngine({
retriever,
});
const query = "What is the meaning of life?";
// Query
const response = await queryEngine.query({
query,
});
// Log the response
console.log(response.response);
}
Feedback
If you have any feedback, please reach out to us at feedback@deepinfra.com