Pular para o conteúdo principal

Qdrant Vector Store

To run this example, you need to have a Qdrant instance running. You can run it with Docker:

docker pull qdrant/qdrant
docker run -p 6333:6333 qdrant/qdrant

Importing the modules

import fs from "node:fs/promises";
import { Document, VectorStoreIndex, QdrantVectorStore } from "llamaindex";

Load the documents

const path = "node_modules/llamaindex/examples/abramov.txt";
const essay = await fs.readFile(path, "utf-8");

Setup Qdrant

const vectorStore = new QdrantVectorStore({
url: "http://localhost:6333",
});

Setup the index

const document = new Document({ text: essay, id_: path });

const index = await VectorStoreIndex.fromDocuments([document], {
vectorStore,
});

Query the index

const queryEngine = index.asQueryEngine();

const response = await queryEngine.query({
query: "What did the author do in college?",
});

// Output response
console.log(response.toString());

Full code

import fs from "node:fs/promises";
import { Document, VectorStoreIndex, QdrantVectorStore } from "llamaindex";

async function main() {
const path = "node_modules/llamaindex/examples/abramov.txt";
const essay = await fs.readFile(path, "utf-8");

const vectorStore = new QdrantVectorStore({
url: "http://localhost:6333",
});

const document = new Document({ text: essay, id_: path });

const index = await VectorStoreIndex.fromDocuments([document], {
vectorStore,
});

const queryEngine = index.asQueryEngine();

const response = await queryEngine.query({
query: "What did the author do in college?",
});

// Output response
console.log(response.toString());
}

main().catch(console.error);